
Browndye 2.0 User’s Manual

Gary Huber

October 6, 2023

1 Requirements

This package requires a C++ compiler that can compile the C++17 stan-
dard; this includes the current g++ and clang++. It also requires an Ocaml
compiler. External libraries required are Expat for XML parsing, and Lapack
for linear algebra; often these are already built into Linux distributions, but
are easy to install if not. Depending on the state of the C++ library, the
Boost C++ library may be required; this currently appears to be the case
for the Mac. By default, the GNU g++ library is used and the Boost library
is not required, but look at the top of the Makefile in the main directory for
instructions on how to change it.

2 Functionality

The Browndye software package consists of two simulation programs and
several auxiliary programs for processing data. It can perform Brownian
dynamics (BD) simulations on collections of of cores, large rigid bodies com-
posed of many smaller spheres, and chains, flexible assemblies of spheres that
can interact with each other and the cores with user-specified force fields.
Several cores and chains can be assembled into groups. It has functionality
very similar to the packages SDA, GeomBD2, and MacroDox. In addition
to outputting trajectories, it can also compute the 2nd-order rate constant
of the encounter of two groups, and relative probabilities of transitions from
one conformation or binding mode to another.

1

2.1 Cores

Each core is made up of charged spheres organized as atoms grouped into
residues. The atoms don’t necessarily have to represent actual atoms; they
could, for example, represent interaction sites in coarse-grained models. Each
core use one or more electric potential grids from APBS (www.poissonboltzman.org)
for computing electrostatic forces with other cores and chains. Each atom
can interact with atoms on other cores and chains by means of a Lennard-
Jones potential or a potential defined by tabulated data and evaluated by a
cubic spline. Each core can also have one or more grids of precomputed Born
1/r4 integral values for approximately computing polar desolvation forces
with other cores.

The atoms in each core are organized into recursive nested spheres in
order to allow quick computation of short-ranged forces, without having to
loop over all pairs of atoms. The charges on the atoms are lumped together
when appropriate in order to save time in computing Coulombic interactions.

2.2 Chains

Each chain is made of spherical atoms joined together with bonds. In ad-
dition to two-atom bonds, three-atom bond angles and four-atom dihedral
angles can also be defined. Forces involving the bonds, bond angles, and di-
hedral angles can be computed using either a force field using a conventional
form from molecular mechanics, or from a cubic spline using tabulated data.
Likewise, the pair-wise non-bonded forces can follow a Lennard-Jones form
or a tabulated spline as described above for the cores. In addition, rigid dis-
tance constraints between two atoms and coplanar constraints among four
atoms can be imposed. Each chain can also be joined to atoms on one or
more cores through bonds, bond angles, dihedral angles, or constraints. Each
chain can also be “frozen” and treated as a rigid body when it is far from
a specified site on another core or chain, in order to allow larger time steps.
Furthermore, the simulation code will freeze an entire connected collection
of chains and cores and treat it as a single rigid body, if all the the chains
are frozen.

2

2.3 Dummies

In order to define reactions (explained below), it is sometimes useful to define
dummy atoms, which have no physical interactions but serve as reference
points. They are grouped into a dummy “molecule”, which is tied to a
particular core. For example, if Molecule B binds to Molecule A, a dummy
molecule might consist of a copy of a subset of Molecule B atoms that touch
Molecule A in the binding pose, and it would move rigidly with a core of
Molecule A. A reaction would then be defined by distances between each
dummy atom and its corresponding atom on Molecule B.

2.4 Motion

The rigid cores and flexible chains are stepped forward using the equations
of Brownian dynamics after the forces are computed [3]. When rigid con-
straints are imposed, the forces necessary to maintain the constraints are
automatically computed at each time step. The time step size is adaptive,
with reasonable guesses made based on the potential energy functions and
geometry, and corrections are made if the forces change too quickly [7]. Ap-
proximate hydrodynamics among chains and cores are computed following
the method of Elcock [2]; each core is treated as a tetrahedron of four spheres
that gives the desired translational and rotational diffusivities.

2.5 Forces

All electrostatic forces involving the cores are computed from APBS electric
potential grids computed for each core. Given a set of grids on a core, the
other cores interact with it via a set of point charges, which can be adaptively
lumped during the simulation [7]. The point charges for each core are read
into the simulation programs separately from the residues and atoms, because
certain models call for lumping or adjusting of charges, and it is easier to
do that outside of the simulation programs. However, the atoms in a chain
have point charges at their centers and are read in directly from the atom
files. The point charges in a chain interact pairwise with other chain atoms
through the screened Coulombic potential,

V (r) =
exp(− r

λd
)

4παsϵ0r
(1)

3

where λd and αs are the Debye length and relative dielectric constant of
the solvent. Finally, the chains interact with each core through its electric
potential grid.

Short-ranged non-bonded interactions are described either through a Lennard-
Jones potential

V (r) =
A

r12
− B

r6
(2)

alternately described as

V (r) = 4ϵ

[(σ
r

)12

−
(σ
r

)6
]

(3)

or a tabulated cubic spline in the manner of the COFFDROP potential [1, 4].
These interactions are applied pairwise among the atoms of each core and
chain, and the atoms on each core are recursively grouped into larger spherical
domains in order to avoid unnecessary looping over core atoms that are out
of range of other atoms [7].

Each atom and residue has a type, and each pair of atom and residue
types is converted into an internal integer atom type. Pairs of these integer
atom types are used to select the particular pair potential for each atom
pair. For the tabulated potentials, all potentials for each pair of (atom type,
residue type) must be included, although wildcard values for the residue
types can be included in the parameter file, and redundant tables are not
stored separately.

The Lennard-Jones parameters can be specified in three different ways. If
two atoms interact with each other, and the Lennard-Jones A and B parame-
ters have been specified for that particular pair of internal atom types (where
the internal atom type is specified by both residue type and atom type within
the residue), then that potential is used. If the Lennard-Jones parameters
have been specified for each atom type separately but not together, then
the Lorenz-Bertholet mixing rules are applied to generate parameters for the
pair. Finally, if an atom’s type is not listed in the parameter file, then a
purely repulsive interaction is assumed with B = 0, and an approximation to
the hard-sphere interaction is made using the atom’s radius. The A param-
eter is chosen from the atom radius so that the “hole” left by the atom in a
cloud of points interacting with it by the r−12 potential in thermal equilib-
rium at 298 K would have the same radial second moment as a hard sphere
of the given radius.

A = kbT (0.9345R)12 (4)

4

(The explicit hard-sphere interactions from the previous versions of Browndye
are no longer used.)

The bonded interactions are specified by pairs of atoms for bonds, trios
of atoms for bond angles, and quartets of atoms for dihedral angles. Core
atoms can also be included in these structures, but at least one atom must
be a chain atoms. The tabulated functions are specified by evenly-spaced
values of distance for the bonds, or angle for the bond and dihedral angles.
Each bond, bond angle, and dihedral angle has a type that is specified in the
parameter file. The molecular mechanics form for bonded interactions is

V =
1

2

[∑
i

kb,i(ri − req,i)
2

+
∑
j

kθ,j(θj − θeq,j)
2

+
∑
k

∑
m

Vk,m(1 + cos(nk,mϕk − γk,m))
] (5)

where the three terms on the right side are sums over bonds, bond angles, and
dihedral angles, respectively, and the parameters come from the particular
type of bonded structure.

Unfortunately, at this time it is not possible to combine the tabulated
spline forces with the molecular mechanics-style forces (Lennard-Jones and
Eq. 5) in the same simulation; the user must choose one or the other.

The length constraints can be specified by a pair of atoms and a distance
and the constraint requiring four atoms to lie in a plane is specified by listing
the four atoms. A constraint may include core atoms, but must have at least
one chain atom. The constraints can be used with either set of force models.

The polar desolvation forces between two cores are computed as in previ-
ous versions of Browndye, with squared charges of one core interacting with
the following integral on another core:

3(αs − αp)

4π(2αs + αp)αsϵ0

∫
(1 + κr)2 exp(−2κr)r−4dr (6)

where the integral is over all interior points of one core, r is the distance
from the charge on the other core to the interior point, and αp and αs are
the relative permitivities of the core and the solvent. The inverse Debye
length is κ. The integral for each point is computed ahead of time and
stored on a grid. This has the same form as the formula used in SDA, where

5

the integral is approximated by a sum over spheres. The user can also input
a factor by which to multiply this force.

Also included, as an option, are nonpolar desolvation, or hydrophobic
terms, as approximated in Gabdoulline and Wade (2009) by a pair-wise term
in Eqs. 1 and 3 of the reference.

∆Gnpd,ij = AiΦj(rij) (7)

where Ai is a precalculated estimate of the solvent-accessible area of Atom
i, and

Φ(rij) = βc


1, r < a

b− r

b− a
, a < r < b

0, r > b

(8)

is an estimate of how buried Atom j is by Atom i, times a surface tension
factor β. The distance rij is the distance from the VdW surface of Atom j to
the center of Atom i, and the parameters have the default values a = 3.1Å,
b = 4.35Å, c = 0.5, and β = 0.025 kcal mol−1Å−2 (which is converted to
Browndye units). These values can be changed (see below), and use of this
energy term is triggered by including the precalculated SASA values (see
below). This term is used only with the molecular mechanics form of the
energy, but not with the spline-based energy.

Browndye also has the option of using an external density, perhaps from
microscopy or tomography, to guide the positions of the atoms. This method
can be used to dock x-ray crystallography structures into a lower-resolution
map. [10] This is described briefly in the density field entry below.

2.6 Reactions

The second-order association rate constant can be computed for two groups
by using the Northrup-Allison-McCammon (NAM) algorithm [8]. The sim-
ulation code selects the b-radius of the algorithm by finding the distance at
which the forces become sufficiently spherically symmetric. The very first
conformations of the groups are used and the b-radius is then fixed, so if
a group changes shape significantly during a simulation, it is possible that
the b-radius might no longer be valid for computing a rate constant. The
user can also input a b-radius. The outer q-radius is also chosen by the
simulation code, and a great enough distance is chosen so that the chance

6

of the two groups returning to within the b-radius is negligible. This is not
a problem, since the code uses a simplified model with adaptive time steps
to resolve the outer regions, thereby using negligible simulation time. The
weighted-ensemble method can be used with this geometry [6], with copies
started on the b-surface and bins spanning the space between the b-surface
and the reaction.

The probability of one or two groups moving from one conformation to
another can also be computed. If two groups are used, the NAM algorithm
can be used to compute the probability of escape before reaching another
conformation.

A reaction criterion is specified by pairs of atoms. Each pair is also
assigned a center-to-center distance. The reaction itself is assigned a number
n. A pair is said to be ”satisfied” if its atoms are closer than the assigned
distance. If n pairs are satisfied, then the reaction is said to occur. For
example, a criterion might comprise all pairs of atoms forming hydrogen
bonds in a protein-protein complex, and the requirement that any three of
the pairs are within 5 Å. In addition to containing pairs, a reaction criterion
can contain other reaction criteria; these inner criteria are treated like pairs
to be satisfied. An example would be an enzyme with two active sites. The
binding of the substrate to each site would be represented by a separate
reaction criterion, but the two reaction criteria could be lumped into another
criterion to represent the overall reaction.

For a reaction criterion with only atom pairs, the reaction coordinate is
defined to be the nth smallest difference, among the pairs, between the actual
interatomic distance and the required distance for that pair. So, at reaction,
the reaction coordinate is zero. For a criterion containing other criteria,
the same formula applies, except the reaction coordinates of the contained
criteria are treated like the distance differences of the pairs.

Entire reaction pathways can be specified by named states and named
reactions. You can think of states as being points connected by arrows, which
are the reactions. The simplest example would be the bimolecular reaction,
in which the system passed from a “reactants” state to a “products” state by
passing through the one reaction. An escape can also occur, but that does
not count as a reaction.

7

2.7 Units

Browndye uses physical units of length in Ångstroms, time in picoseconds,
energy in multiples of kBT where kB is Bolzmann’s constant and the tem-
perature T is 298K, and charge in multiples of the elementary charge. These
are the same units used by APBS. However, the 2nd-order rate constants are
output in units of 1/(M s).

2.8 Other

Browndye can run on several CPU cores in shared-memory mode, which
trajectories distributed across the cores, both when using single trajectories
and using the weighted-ensemble method. At this time, the weighted en-
semble method can only be used for a single association reaction but not for
more complex reaction pathways. There are two main simulation programs:
nam simulation, which runs one trajectory at a time, and we simulation,
which uses the weighted-ensemble method. There are also several auxilliary
programs which can be used to prepare the input, compute rate constants
from the output, and prepare trajectory files for viewing with VMD. The
starting information required for a Browndye simulation are electrostatic
grids from APBS, PQR files of the atoms of the rigid cores and chains, files
describing the chains and how they are connected to the cores, files describ-
ing the reaction criteria, and a file describing the simulation itself. All of the
the files use the XML format, except for the large grid files, which use the
DX format. The only external libraries required for compiling Browndye are
the Expat XML parser, the C interface Lapacke to Lapack, and the C++
Boost libraries.

3 Simulation Program Usage

This section will go through the main input file, and the various files that it
refers to. Later on we will discuss the auxilliary programs that are used to
create some of the files.

3.1 Installation Requirements

The following freely available pieces of software are required for Browndye:

8

• C++ compiler that is up-to-date enough to handle C++14 code

• compiler for the OCaml programming language

• Expat XML Parser

• C++ Boost library

• LAPACK linear algebra library

• LAPACKE C interface to LAPACK

By default, the compilation method assumes that the C++ compiler used is
g++, the GNU compiler.

3.2 Simulation File

The first is the simulation file, which is given directly to the simulation code.

<root>
<n threads> i n t e g e r </n threads> # opt i ona l
<seed> i n t e g e r </seed>
<output> f i l ename </output>

fo r nam simulation
<n t r a j e c t o r i e s > i n t e g e r </n t r a j e c t o r i e s >
<n t r a j e c t o r i e s p e r o u t pu t> i n t e g e r </n t r a j e c t o r i e s p e r o u t pu t> # opt i ona l
<max n steps> i n t e g e r </max n steps>
< t r a j e c t o r y f i l e > f i l ename </ t r a j e c t o r y f i l e > # opt i ona l
<n s t eps pe r output> i n t e g e r </n s t eps pe r output> # opt i ona l
<min r x n d i s t f i l e> f i l ename </m i n r x n d i s t f i l e> # opt i ona l

f o r we s imulat ion
<n cop ie s> i n t e g e r </n cop ie s>
<n b in cop i e s> i n t e g e r </n b in cop i e s>
<n steps> i n t e g e r </n steps>
<n we steps per output> i n t e g e r </n we steps per output>
<b i n f i l e > f i l ename </b i n f i l e >

system de s c r i p t i o n

9

<system>
<s o l v e n t f i l e > f i l ename </ s o l v e n t f i l e >
< f o r c e f i e l d > name </ f o r c e f i e l d >
<parameters> f i l ename </parameters>
<s t a r t a t s i t e > t rue / f a l s e </ s t a r t a t s i t e > # opt i ona l
<b rad ius> r e a l </b rad ius> # opt i ona l
<r e a c t i o n f i l e > f i l ename </ r e a c t i o n f i l e > # opt i ona l
<no nam> t rue / f a l s e </no nam> # opt i ona l

<d e n s i t y f i e l d > f i l ename </d e n s i t y f i e l d > # opt i ona l
<atom weights> f i l ename </atom weights> # opt i ona l

<hydrodynamic interact ions> t rue / f a l s e </hydrodynamic interact ions> # opt i ona l
<n s teps be tween h i update s> i n t e g e r <n s teps be tween h i update s> # opt i ona l

<t ime s t ep t o l e r an c e s> # opt i ona l
<f o r c e> r e a l </fo r ce>
<r eac t i on> r e a l </reac t i on>
<minimum core dt> r e a l </minimum core dt>
<minimum chain dt> r e a l </minimum chain dt>
<minimum core react ion dt> r e a l </minimum core react ion dt>
<minimum chain react ion dt> r e a l </minimum chain react ion dt>
<constant dt> r e a l </constant dt> # opt i ona l

</t ime s t ep t o l e r an c e s>

<r e s t r a i n t s> # opt i ona l
<r e s t r a i n t> # one or more

<l ength> r e a l </length>
<group0> name </group0>
<core0> name </core0>
<chain0> name </chain0> # e i t h e r core0 or chain0 , but not both
<atom0> i n t e g e r </atom0>
<group1> name </group1>
<core1> name </core1>
<chain1> name </chain1> # e i t h e r core1 or chain1 , but not both
<atom1> i n t e g e r </atom1>

</r e s t r a i n t>
</ r e s t r a i n t s>

10

<group> # one or more
<name> name </name>
<core> # zero or more

<name> name </name>
<atoms> f i l ename </atoms>
<hydro params> f i l ename </hydro params>

<e l e c t r i c f i e l d > # opt i ona l
<gr id> f i l ename </gr id> # one or more
<mu l t i p o l e f i e l d> f i l ename </mu l t i p o l e f i e l d>

</ e l e c t r i c f i e l d >

<d e s o l v a t i o n f i e l d> # opt i ona l
<gr id> f i l ename </gr id> # one or more

</d e s o l v a t i o n f i e l d>

<e f f c h a r g e s> f i l ename </e f f c h a r g e s> # opt i ona l
<e f f c ha r g e s s qua r ed> f i l ename </e f f c ha r g e s s qua r ed> # opt i ona l

<areas> f i l ename </areas> # opt i ona l

<copy>
<core> core name </core>
<t r an s l a t i on> 3 r e a l s </t r an s l a t i on>
<ro ta t i on> 9 r e a l s </ro ta t i on>

</copy>

</core>

<chain> f i l ename </chain> # zero or more

<dummy> # zero or more
<name> name </name>
<atoms> f i l ename </atoms>
<core> name </core>

</dummy

11

</group>

</system>

</root>

The entries are explained as follows:

• n threads - number of threads used; should not be greater than the
number of available CPU cores. Default is 1.

• seed - used to seed the random number generator

• output - name of file where output is sent (not trajectories)

• The following are used for nam simulation.

• n trajectories - total number of trajectories to be run

• n trajectories per output - number of time steps between updates
to the output file. Default is 1.

• max n steps - number of time steps taken in a trajectory before giving
up and declaring that it is “stuck”.

• trajectory file - prefix of files used for outputting of trajectories. A
different file is created for each thread. If the prefix is ”trajectory”,
then the file for Thread 0 is ”trajectory0.xml”, and so forth. This is
optional; if it is not given, then no files are generated. The trajectory
file consists of rotation matrices and translation vectors describing the
state of the rigid cores, and positions of the atoms in the chains.

• n steps per output - number of time steps between output to tra-
jectory file. Default is 1.

• n output states per block - System states are lumped together in a
MIME-formatted data block upon output to a trajectory file, in order
to save space in the XML file. This integer tells how many system
states are to be included in a block. The larger the number, the more
efficient the output might be, but the more memory is required to hold
the state data before it is output. Default is 1000.

12

• min rxn dist file - file to output minimum reaction coordinate for
each trajectory.

• The following are used for we simulation.

• n bin copies - number of system copies used in building bins

• bin file - file containing the bin information, comes from the program
build bins

• n copies - number of system copies

• n steps - total number of steps; if you have m copies and you do n
time steps, the total number of steps is n*m

• n we steps per output - number of time steps between updates of
output file

• system information about the physical system and its motions are
described inside this section.

• solvent file - information on the solvent

• force field - for now, can take the valuesmolecular mechanics,
molecular mechanics hp or spline, to select the type of force
field. The option molecular mechanics hp includes the hy-
drophobic force option above.

• parameters - parameter file for the force field. Optional for
molecular mechanics with no chains.

• start at site - true or false; if true, then then all the molec-
ular components are started according to their atom input files;
otherwise, the second group is started on the b-sphere and the
second-order rate constant is computed.

• b radius - This can be automatically computed, but if a value is
given, it overrides the automatic value.

• hydrodynamic interactions - true or false; include hydrody-
namic interactions. Default is true.

• n steps between hi updates - number of steps between up-
dates to hydrodynamic interactions. For large chains, this can
take most of the simulation time. Default is one.

13

• reaction file - describes the reaction pathways and criteria

• no nam - If and only if you have two groups and a reaction, the
simulation programs will automatically construct a b-radius and
assume the possibility of escape. However, if you have two groups
restrained to each other along with a reaction, but there is no
physical possibility of escape, set this value to true to keep the
b-radius from being constructed and possible escapes from being
assumed. Default is false. It has an effect only for the case of two
groups with a reaction.

• density field - dx file containing an external density from mi-
croscopy or tomography.

• atom weights - file of atomic weights for each atom name in the
atoms file. When there is an external density in density field,
the potential of force on each atom is wρ, where ρ is the input
density and w is the weight assigned to the atom (usually atomic
mass).

• time step tolerances - This block contains parameters describ-
ing limitations on the time step sizes.

• minimum core dt - for a system with only rigid cores and
frozen chains, this is the smallest possible time step size in
picoseconds. Default is zero.

• minimum chain dt - This is the smallest possible time step
size for a system with unfrozen chains; this typically will be
less than minimum core dt. Default is zero.

• minimum core reaction dt - If a reaction coordinate is
small, then the minimum step size given byminimum core dt
can be overridden by the value given by this tag. In other
words, the step step still remains larger than that given by
minimum core dt unless the tolerance given by the reac-
tion tag is violated. This allows very small time steps near a
reaction boundary. The default value is that given by mini-
mum core dt.

• minimum chain reaction dt - This has the same relation
to minimum chain dt.

• constant dt - If included, this tells the simulation to use
only a constant time step size. For a COFFDROP chain, the

14

recommended value is 0.05.

• restraint - restraint keeping two given atoms from moving more
than a certain distance apart

• length - maximum distance between the two atoms

• group0 - group of first atom

• core0 - core of first atom

• chain0 - chain of first atom, if not on core

• atom0 - index of first atom

• group1,core1,chain1,atom1 - for second atom, same as for
first

• group - This block describes the rigid cores and chains that make
up a group.

• name - Each group must have a unique name

• core - This block describes a rigid core. There can be zero or
more of these blocks in each group.

• name - Each core must have a unique name

• atoms - the XML file of the core atoms, generated from
the PQR file by the program pqr2xml

• hydro params - file with hydrodynamic parameters; out-
put of program hydro params

• electric field - This block describes the electric field and
is optional.

• grid - DX formatted file of electric potential; this is the
output from APBS. Can have several.

• multipole field - file of multipole extension outside
grids, output of program mpole grid fit.

• areas - file of atomic solvent accessible areas (optional).
This file comes from the output of the program get areas.

• desolvation field - This block describes the desolvation
field; it is just like the electric field block but does not
use the multipole field.

• eff charges - file with effective charges and lumping in-
formation; output of lumped charges. The input into
lumped charges can come from other programs such ad
test charges, residue test charges, and protein test charges.

15

• eff charges squared - file like eff charges above, but
with the charges squared. This too comes from lumped charges,
but the input to lumped charges first fed through the
program compute charges squared.

• copy - this block allows on to specifify a copy of a previ-
ously defined core, but with starting position translated
and rotated relative to the parent’s starting state. This
allows several cores to share the same information, such
as electric fields and atoms. When this is used, the above
information in the core block is ignored, except for name.

• parent - the name of the parent core

• translation - the position of the hydrodynamic mobil-
ity center relative to that of the parent

• rotation - the 3x3 matrix describing the rotation about
the mobility center before translation. (The data in the
translation and rotation blocks together make up the
4x4 affine transformation matrix.)

• chain - filename describing a chain. There can be zero or
more of these blocks in each group.

• dummy - block describing dummy molecule

• name - name of dummy molecule

• atoms - the XML file of the atoms

• core - name of associated core in the same group. These
atoms move rigidly with the core.

3.3 Chain File

Unlike the cores, each chain has its own file, because of the larger amount of
information.

<root>
<name> name </name>
<atoms> f i l ename </atoms>
<areas> f i l ename </areas> # opt i ona l

<constant dt> r e a l </constant dt> # opt i ona l

16

<bonds>
<bond>

<atoms> i n t e g e r i n t e g e r </atoms>
<type> name </type>
<cores> name name </cores> # opt i ona l

</bond> # one or more
</bonds> # opt i ona l

<angles>
<angle>

<atoms> i n t e g e r i n t e g e r i n t e g e r </atoms>
<type> name </type>
<cores> name name name </cores> # opt i ona l

</angle> # one or more
</angles> # opt i ona l

<d ihedra l s>
<dihedra l>

<atoms> i n t e g e r i n t e g e r i n t e g e r i n t e g e r </atoms>
<type> name </type>
<cores> name name name name </cores> # opt i ona l

</d ihedra l> # one or more
</d ihedra l s> # opt i ona l

< l e n g th c on s t r a i n t s>
< l e ng th con s t r a i n t>

<atoms> i n t e g e r i n t e g e r </atoms>
<l ength> r e a l </length>
<cores> name name </cores> # opt i ona l

</ l eng th con s t r a i n t> # one or more
</ l e ng th c on s t r a i n t s> # opt i ona l

<c op l ana r c on s t r a i n t s>
<cop l ana r con s t r a i n t>

<atoms> i n t e g e r i n t e g e r i n t e g e r i n t e g e r </atoms>
<cores> name name name name </cores> # opt i ona l

</cop l ana r con s t r a i n t> # one or more
<cop l ana r con s t r a i n t> # opt i ona l

17

<excluded atoms>
<chain atom>

<atom> i n t e g e r </atom>
<ex atoms> i n t e g e r . . . </ex atoms>

</chain atom>
zero or more

<core>
<name> name </name>
<core atom>

<atom> i n t e g e r </atom>
<ex atoms> i n t e g e r . . . </ex atoms>

</core atom>
one or more

</core>
zero or more

</excluded atoms>
opt i ona l

<one four atoms>
<chain atom>

<atom> i n t e g e r </atom>
<ex atoms> i n t e g e r . . . </ex atoms>

</chain atom>
zero or more

<core>
<name> name </name>
<core atom>

<atom> i n t e g e r </atom>
<ex atoms> i n t e g e r . . . </ex atoms>

</core atom>
one or more

</core>
zero or more

18

</one four atoms>
opt i ona l

<neve r f rozen> t rue / f a l s e </neve r f rozen> # opt i ona l

<c o r e i n t e r a c t o r s>
< i n t e r a c t o r>

<group> name </group>
<core> name </core>
<atom> i n t e g e r </atom>
<i nn e r d i s t an c e> r e a l </ inne r d i s t an c e>
<out e r d i s t anc e> r e a l </ou t e r d i s t anc e>

</ i n t e r a c t o r>
one or more

</c o r e i n t e r a c t o r s>
opt i ona l

<cha i n i n t e r a c t o r s>
< i n t e r a c t o r>

<group> name </group>
<chain> name </chain>
<i nn e r d i s t an c e> r e a l </ inne r d i s t an c e>
<out e r d i s t anc e> r e a l </ou t e r d i s t anc e>

</ i n t e r a c t o r>
one or more

</cha i n i n t e r a c t o r s>
opt i ona l

<copy>
<parent> name </parent>
<t r an s l a t i on> 3 r e a l s </t r an s l a t i on>
<ro ta t i on> 9 r e a l s </ro ta t i on>
<equ i va l en t c o r e s>

<match> name name </match> # one or more
</equ i va l en t c o r e s>
zero or more

</copy>
opt i ona l

19

</root>

• name - every chain has a name

• atoms - xml file of atoms; output of pqr2xml

• areas - file of atomic solvent accessible areas (optional). This file comes
from the output of the program get areas. Although a chain atom’s
SASA will change with the chain’s motion, a value used from an initial
configuration can still be useful.

• constant dt - Optional. If this chain is unfrozen, then the simulation
proceeds with the given timestep size, unless another unfrozen chain
has a smaller value given by constant dt.

• bond - describes a bond with two atoms.

• type - name of type corresponding to the parameter file, which
describes the potential energy function

• atoms - integer indices of each atom

• cores - Although a bond is usually defined for chain atoms, it is
possible for a bond to include a core atom. So, the core name is
given for its corresponding atom. If the atom is on the chain, an
asterisk * is given. If all of the atoms are on the chain, then this
block is not needed.

• angle - same information as a bond, but with three atoms for a bond
angle.

• dihedral - same information as a bond or bond angle, but with four
atoms for a dihedral angle.

• length constraint - follows the same convention for assigning atoms
as the bond above.

• length - desired length of constraint

• coplanar constraint - assigns four atoms to lie in a plane; uses same
convention for assigning atoms as above.

20

• excluded atoms - In certain force fields, atoms that are closely con-
nected with each other do not interact according to the non-bonded
force field. So, it is possible for each chain atom to have a list of other
atoms with which the pair-wise non-bonded forces are not computed.

• chain atom - describes the excluded atoms for a particular chain
atom

• atom - atom on this chain

• ex atoms - list of atoms on the chaingthat are exluded from
interacting with this atom

• core - All core atoms that are excluded from non-bonded inter-
actions with atoms on the chain are listed by core.

• name - name of core

• core atom - atom of core

• atom - number of core atom

• ex atoms - list of excluded chain atoms

• one four atoms - In certain force fields, pairs of atoms that are some-
what more distantly connected, such as those which have three bonds
between them, have their non-bonded interactions scaled by a cer-
tain amount. This block has the same type of information as ex-
cluded atoms.

• never frozen - If this is set to “true”, then the chain is never frozen.
Default value is true.

• core interactors - Unless the chain is designated as “never frozen”,
it will remain frozen unless one of its atoms comes within a certain
distance of an atom on a core, called the interactor.

• interactor - can have more than one

• group - name of group

• core - name of core

• atom - integer index of atom

• inner distance - If all atoms of the chain are outside of this
radius, the chain is not unfrozen until one of the atoms passes
within this distance of the interactor atom.

21

• outer distance - If at least one atom is within this distance
from the interactor atom, the chain is not frozen until all
atoms are outside of this distance. It must be larger than the
inner distance.

• chain interactors - Similar to core interactors, except the iteractor
is another chain, with no atom specified. Instead, about each chain,
the smallest possible sphere is constructed that contains its atoms.
The distance between the centers of the two enclosing spheres is used
to determine freezing and unfreezing.

• interactor - can have more than one

• group - name of group

• chain - name of chain

• inner distance

• outer distance

• copy - this block allows on to specifify a copy of a previously defined
chain, but with starting position translated and rotated relative to
the parent’s starting state. This allows several chains to share the
same information, such as bonds, bond angles, dihedrals, and excluded
atoms. When this is used, the above information in the core block is
ignored, except for name.

• parent - the name of the parent chain

• translation - the position of the hydrodynamic mobility center
relative to that of the parent

• rotation - the 3x3 matrix describing the rotation about the mo-
bility center before translation. (The data in the translation and
rotation blocks together make up the 4x4 affine transformation
matrix.)

• equivalent cores - The child chain may be associated with sev-
eral cores which are analogous to but separate from those of the
parent chain.

• match - two names; the first is the core associated with this
chain, and the second is the one associated with the parent
chain.

22

3.4 Solvent File

This file describes the solvent.

<root>
<debye length> r e a l </debye length>
<d i e l e c t r i c > r e a l </d i e l e c t r i c >
<r e l a t i v e v i s c o s i t y > r e a l </ r e l a t i v e v i s c o s i t y >
<kT> r e a l </kT>
<deso lvat ion parameter> r e a l </deso lvat ion parameter>

</root>

• debye length - default is infinity

• dielectric - relative to vacuum permittivity. Default is 78, that of
water.

• relative viscosity - relative to water viscosity. Default is one.

• kT - default is one

• desolvation parameter - factor that multiplies the energy of Eq. 6

3.5 Atom file

This is the form for atoms for both cores and chains. The program pqr2xml
produces this format.

<root>
<r e s idue>

<name> name </name>
<number> i n t e g e r </number>
<atom>

<name> name </name>
<number> i n t e g e r </number>
<pos i t i on> r e a l r e a l r e a l </pos i t i on>

</atom>
one or more

</re s idue>
one or more

</root>

23

• residue - All atoms are organized into residues

• name - usually the residue type, so does not need to be unique

• number - an integer index; they must be unique and increasing,
but there can be gaps.

• atom

• name - usually the atom type; does not need to be unique

• number - an integer index; they must be unique and increas-
ing, but there can be gaps.

• position - x,y,z coordinates

3.6 Reaction File

This describes the reactions and pathways.

<root>
< f i r s t s t a t e > s t r i n g </ f i r s t s t a t e >
<r ea c t i on s>

<r eac t i on>
<name> name </name>
<s t a t e b e f o r e> name </s t a t e b e f o r e>
<s t a t e a f t e r > name </ s t a t e a f t e r >
<c r i t e r i o n>

<molecules>
<molecule0> group name , substructure name </molecule0>
<molecule1> group name , substructure name </molecule1>

</molecules>
<n needed> i n t e g e r </n needed>
<pair>

<atoms> i n t e g e r i n t e g e r </atoms>
<di s tance> r e a l </d i s tance>

</pair> # zero or more
<c r i t e r i o n> . . . </c r i t e r i o n> # zero or more

</c r i t e r i o n>
exac t l y one

</reac t i on>
one or more

24

</r eac t i on s>

</root>

• first state - name of starting reaction state

• reactions

• reaction

• name - unique name

• state before - Each reaction connects two states in one di-
rection

• state after

• criterion - Each reaction has exactly one criterion at the top

• molecules - Each reacting pair of atoms can be on a
different substructure (core, chain, or dummy) in different
groups

• molecule0 - The core, chain, or dummy is designated
by the name of the group and then the name of the
core, chain, or dummy

• molecule1 - Likewise for the second atom

• n needed - Number of (pairs + internal criteria) that
must be satisfied for reaction

• pair - Pair of atoms, with chains, cores, or dummies
designated above. Can have one or more in this block.

• atoms - indices of atoms

• distance - center-to-center distance between atoms
below which the pair is satisfied

• criterion - can recursively nest reaction criteria; can
have several here

3.7 Forcefield Parameters

All parameters are in one parameter file. Each atom type is designed by a
residue type and an atom type within the residue (e.g., an α-carbon within
an alanine).

25

3.7.1 Molecular Mechanics

The pairwise non-bonded parameters are indexed solely by the atom and
residue types.

<root>
<units> name </units>
<on e f ou r f a c t o r> r e a l </on e f ou r f a c t o r>

<r e s idue>
<name> r e s i du e type </name>
<atom>

<name> atom type </name>
<A> parameter
 parameter
<sigma> parameter </sigma>
<eps i l on> parameter </eps i l on>

</atom>
one or more

</re s idue>
zero or more

<pa i r parameters>
<parameter>

<atom0> atom type </atom0>
<re s idue0> r e s i du e type </res idue0>
<atom1> atom type </atom1>
<re s idue1> r e s i du e type </res idue1>
<A> parameter
 parameter
<sigma> parameter </sigma>
<eps i l on> parameter </eps i l on>

</parameter>
one or more

</pa i r parameters>

• units - units of energy in the input. Can either be “default” (using
Browndye units) or “kcal per mole”, as is common in many parameter
sets. Length units are in Ångstroms.

26

• one four factor - factor by which non-bonded energy is multiplied for
one-four pair designated in the chain file.

• residue - used to give single-atom Lennard-Jones parameters, which
then follow the Lorenz-Bertholet combining rules.

• name - type of residue

• atom - type of atom

• A - Lennard-Jones A parameter; units of energy*length12

• B - Lennard-Jones B parameter; units of energy*length6

• sigma - Lennard-Jones σ parameter; units of length (if A and
B are not used)

• epsilon Lennard-Jones ϵ parameter; units of energy

• pair parameters - LJ parameters specified by atom pair

• parameter - zero or more

• residue0 - type of first residue

• atom0 - type of first atom

• residue1 - type of second residue

• atom1 - type of second atom

• A - Lennard-Jones A parameter; units of energy*length12

• B - Lennard-Jones B parameter; units of energy*length6

• sigma - Lennard-Jones σ parameter; units of length (if A and
B are not used)

• epsilon Lennard-Jones ϵ parameter; units of energy

The nonpolar desolvation (or hydrophobic) forces are given in the block

<hydrophobic>
<a> r e a l
 r e a l
<c> r e a l </c>
<beta> r e a l </beta>

</hydrophobic>

27

The block, and each of its entries, are optional; the defaults described above
are used when the parameter is not given. Parameters a and b are given in Å,
c is unitless, and β has units of surface tension, given in terms of Browndye
energy and length units.
Each bond, bond angle, and dihedral is designated by its own name. Bonded
parameters:

<bonds>
<bond>

<name> name </name>
<kr> r e a l </kr>
<req> r e a l </req>

</bond>
zero or more

</bonds>

<angles>
<angle>

<name> name </name>
<kth> r e a l </kth>
<theq> r e a l </theq>

</angle>
zero or more

</angles>

<d ihedra l s>
<dihedra l>

<name> name </name>
<mode>

<n> i n t e g e r </n>
<gamma> r e a l </gamma>
<V> r e a l </V>

</mode>
one to four

</d ihedra l>
zero or more

</d ihedra l s>

28

</root>

• bonds

• bond - bond type

• name - name of type

• kr - kb,i in Eq. 5

• req - req,i in Eq. 5

• angles

• angle - angle type

• name - name of type

• kth - kθ,j in Eq. 5

• theq - θeq,j in Eq. 5

• dihedrals

• dihedral

• name - name of type

• mode - inner sum of dihedral term in in Eq. 5

• n - nk,m in Eq. 5

• V - Vk,m in Eq. 5

• gamma - γk,m in Eq. 5

3.7.2 Spline-Based

This model of potential energy uses cubic splines fit to evenly spaced data for
pair-wise non-bonded interactions, bonds, bond angles, and dihedral angles.
The atom and residue type names are mapped to an integer index at the
beginning of the file. The index 0 for residue types is reserved as a wildcard;
it stands for any residue. The energy function not only depends on the atom
and residue types; it also depends on the order along the chain of residues, as
in a protein. So, the pair-wise interaction between two β-carbons on adjacent
residues may be different than the same interaction between non-adjacent
residues.
Bonds and non-bonded pairwise interactions are both listed under the tag
⟨pairs⟩. The non-bonded interactions, which occur for any pair of atoms with

29

the designated residue and atom types, are denoted with ⟨order⟩ 0 0 ⟨order⟩”
in the “⟨potential⟩” record, while any other numbers in the “order” tag refer
to an interaction between specific atoms and are treated as a bond.
Each pair, bond angle, and dihedral has an integer index, rather than a name.
These match up with the names in the “type” tags in the chain file. The
contents of the “atoms” and “residues” tags map those names to the indices.

<top>
<units> name </units>
<types>

<atoms>
<type>

<name> name </name>
<index> i n t e g e r </index>

</type>
one or more

</atoms>

<r e s i due s>
<type>

<name> name </name>
<index> i n t e g e r </index>

</type>
one or more

</r e s idue s>
</types>

<pa i r s>
<di s tance> r e a l r e a l </d i s tance>
<po t en t i a l s>

<po t en t i a l>
<index> i n t e g e r </index>
<r e s i due s> i n t e g e r i n t e g e r </r e s idue s>
<atoms> i n t e g e r i n t e g e r </atoms>
<orders> i n t e g e r i n t e g e r </orders>
<data> r e a l (two or more) </data>

</po t en t i a l>
one or more

30

</po t en t i a l s>
</pa i r s>

<bond angles>
<angle> r e a l r e a l </angle>
<po t en t i a l s>

<po t en t i a l>
<index> i n t e g e r </index>
<r e s i due s> i n t e g e r i n t e g e r i n t e g e r </r e s idue s>
<atoms> i n t e g e r i n t e g e r i n t e g e r </atoms>
<orders> i n t e g e r i n t e g e r i n t e g e r </orders>
<data> r e a l (two or more) </data>

</po t en t i a l>
one or more

</po t en t i a l s>
</bond angles>

<d ih ed ra l ang l e s>
<angle> r e a l r e a l </angle>
<po t en t i a l s>

<po t en t i a l>
<index> i n t e g e r </index>
<r e s i due s> i n t e g e r i n t e g e r i n t e g e r i n t e g e r </r e s idue s>
<atoms> i n t e g e r i n t e g e r i n t e g e r i n t e g e r </atoms>
<orders> i n t e g e r i n t e g e r i n t e g e r i n t e g e r </orders>
<data> r e a l (two or more) </data>

</po t en t i a l>
one or more

</po t en t i a l s>
</d ih ed ra l ang l e s>

</top>

• distance - two values are the low and high of the range

• angle - same as for distances

• potential - for each pair, angle, and dihedral, contains the description
of the potential energy and types and orders of atoms and residues

31

• residues - indices of residue types

• atoms - indices of atom types

• orders - numerical order of residue from N-terminus. For a pair,
two 0’s denotes a non-bonded pair-wise interaction.

• data - values of potential energy at evenly spaced intervals be-
tween and including the two values of distance or angle.

The atoms, residues, and orders tags are not used by the simulation code,
since the pair, angle, or dihedral types are already assigned to those struc-
tures in the chains. Rather, they are used by other programs like coff-
drop chain to help generate chain files.

3.8 Simulation Programs

3.8.1 nam simulation

In order to run a single-trajectory simulation, the program nam simulation
is invoked with the simulation file:

nam simulation s imu la t i on . xml

The main results are periodicly written to the file specified by the results
tag in the simulation file. At any time, the 2nd-order reaction rate can be
computed by running compute rate constant:

cat r e s u l t s . xml | compute rate constant

assuming that “results.xml” is the results file. This outputs the estimate of
the rates and their 95% confidence intervals to standard output.

3.8.2 process trajectories

Trajectories can be viewed by processing the trajectory files with the auxiliary
programs process trajectories and vtf trajectory. The trajectory files
are output in a MIME format within the XML in order to save space, and
the completed files include information necessary to quickly select individual
trajectories. In addition to the trajectory files themselves, nam simulation
also outputs trajectory index files, whose names follow the cooresponding
trajectory file. For example, if the trajectory file is ”traj2.xml”, the index file
is ”traj2.index.xml”. The index file is used in order to avoid plowing through

32

megabytes of XML in order to find a particular trajectory. Each trajectory
is given a number (starting at 0), and each trajectory is divided into one or
more numbered subtrajectories. Each time the molecular system completes
a reaction, the current subtrajectory terminates, and if the reaction is not
final, a new subtrajectory starts. If there is only one reaction, then there
is only one subtrajectory. Regardless of the argument of the -nstride flag
below, the last conformation before a reaction is always output; this allows
the user to see the final bound state, for example.
The program process trajectories takes the following arguments with flags:

• -traj : trajectory file from nam simulation

• -index : index file

• -n : trajectory number in file (starting with 0)

• -sn : subtrajectory number (starting with 0); default is 0.

• -nstride : only every nstrideth state is output; the default of 1 means
that every state is output

• -srxn : find subtrajectories resulting from completion of the given
reaction (see below)

• -ucomp : find subtrajectories starting from the given state but failing
to complete

Output to standard output is an XML file, not in MIME format, of a single
subtrajectory. In addition, this program lets you select out subtrajectories
that have led to a particular reaction. It is called with the -traj and -index
flags and their file arguments, and with the flag -srxn with the given reaction
name as the argument. This causes it to print out a list, in XML format, of
each trajectory and subtrajectory that has led to the reaction. In a similar
manner, the program will output a list of subtrajectories starting from a
state that lead to an escape; the name of the state is given as the argument
to the -uncomp flag.

3.8.3 vtf trajectory

The output from process trajectories can be processed by vtf trajectory
to generate files that can be viewed. It receives, through standard input, the

33

trajectory file output from process trajectories, and outputs to standard
output a VTF file that can be read and viewed with VMD. It can also take
this flag as a argument:

• -pqr: if included, trajectory is output as concatenated PQR files in-
stead of VTF

3.8.4 rates of distances

Often one wants to tune the reaction criteria to match a known rate constant.
Instead of using a trial-and-error approach of setting the required distance
in a reaction criterion, one can estimate the reaction rate as a function of
required distance in one simulation. This is done by running a trajectory,
and outputting the minimum reaction distance achieved before escaping for
good. The reaction is turned off by setting the required distance to zero, so
that all trajectories escape. Then, for each value of the distance, the fraction
of trajectories that would have reacted had that distance been the criterion
for reaction is computed, along with the corresponding rate constant. This
tabulated function can be used to find the required distance to give a desired
rate constant. To do this requires four steps. First, set an output file for the
minimum reaction distances in the body of the input file by including

<min r x n d i s t f i l e> d i s t f i l e </m i n r x n d i s t f i l e>

Next, set the reaction distances in the reaction description to zero; this keeps
reactions from taking place. Then, run nam simulation as above. Finally,
run the program rates of distances, using as inputs the normal output file
of nam simulation and the file named inside the min rxn dist file tag:

r a t e s o f d i s t a n c e s −r e s r e s u l t f i l e d i s t d i s t f i l e > o u t p u t f i l e

The output gives an XML file with gives the rate constant and its 95%
confidence interval as a function of distance. If you just want to ouput a
plain file for easy plotting, add the flag -plain to the command line.

3.8.5 we simulation

In order to run a weighted-ensemble simulation, it necessary first to build
configuration space bins; the bin information is placed in the file prefix0-
prefix1-bins.xml . This is done by running the programbuild bins :

b u i l d b i n s s imu la t i on . xml

34

The number of system copies used is designated by the n-bin-copies tag in
the input file. As it runs, reaction coordinate numbers will go scrolling past;
they should keepgetting smaller and eventually stop. If that does not happen,
i.e., the numbers keep on going, you might need to increase the number of
system copies, or it might be that your reaction criterion is unattainable.
After the bins are built, the actual weighted-ensemble simulation is run:

we s imulat ion s imu la t i on . xml

As before, the results are output to the file specified by results . In each
row of output numbers, the right-most number is the flux of system copies
that escaped without reaction, while the other ones are reactive fluxes. So,
even for a rare reaction event, you should at least see small numbers for
the reactive fluxes after the system has reacted steady-state. This can be
visually examined at any point, and can also be analyzed as above, but with
a different program:

compute rate constant we < r e s u l t s . xml

assuming that results.xml is the results file. Because the streams of numbers
are autocorrelated, a more sophisticated approach for computing confidence
intervals is used [9], and if there are not enough data points, the program
compute rate constant we will simply refuse to provide an answer and
print out a message about autocorrelations not dying away quickly enough.
Unlike the single-trajectory method, the weighted-ensemble method cannot
handle arbitrary reaction networks; for now, it can only handle nested re-
action criteria with the same atom-atom contacts but different required dis-
tances. This program can also convert the results file from we simulation
into the format output by nam simulation; this is done by including the
flag -nam in the command.

4 Preprocessing

For most of the programs, typing the program name followed by -help will
give a description of the function and required arguments.

4.1 pqr2xml

This program converts a PQR file, which describes the collection of charged
spheres making up the molecule, to an equivalent XML file (PQRXML file).

35

The reason for this is that most of the files processed by the UCBD soft-
ware are in XML format. PQR files can be generated from PDB files using
software included with APBS. More information on the PQR format, and
the equivalent XML format, can be found in the APBS documention. The
pqr2xml program receives the PQR file through standard input, and outputs
to standard output. Example:

pqr2xml < mol . pqr > mol . xml

4.2 make rxn pairs

Although the above file can be generated by hand, in the case of two large
molecules forming a complex, it is better to have some help at least to gener-
ate the pairs. This program takes three files and generates a file listing atom
pairs.

• -mol0 : XML file of the atoms of Molecule 0

• -mol1 : XML file of the atoms of Molecule 1

• -ctypes : file defining possible intermolecular atomic contacts

• -dist : distance within which possible pairs are sought

• -nonred : removes redunant pairs, as described below

An example is seen in the Makefile of the thrombin example. The two
molecule XML files represent the atoms of the molecules in their complexed
state, the file addressed by the -ctypes flag denotes the types of atoms in-
volved in potential contacts. If any two atoms of a possible pair are within
the distance given by the flag -dist, then they are output as a reaction pair.
The output file pairs.xml contains an XML listing of the reaction pairs. This
can be used to make a reaction file.
If the -nonred flag is present in the input, then after finding possible pairs,
the program eliminates redundant pairs. It groups the pairs according to
connectivity, selects the closest bond in each group, and eliminates all other
pairs involving the atoms of the closest pair. It then regroups and eliminates
repeatedly until no more connected groups are left. Previous studies using
SDA used a very similar approach.

36

The structure of the file contacts.xml can enumerate pair possibilities in
two ways. One way is to list atom types (which include the residue type) of
Molecule 0, and the atom types of Molecule 1, and state that all combinations
of atoms from the lists is a possible pair. This is done in the file protein-
protein-contacts.xml.bak in the tutorial , where all possible hydrogen-
bonding pairs are implicitly enumerated. Another way is to explicitly list
the pairs. This is the file structure:

<contacts>
<combinations>

<molecule0>
<contact>

<atom> NE2 </atom>
<r e s idue> HIS </atom>

</contact>
. . .

</molecule0>

<molecule1>
<contact>

<atom> OD1 </atom>
<r e s idue> ASP </atom>

</contact>
. . .

</molecule1>

</combinations>

. . .

<e x p l i c i t>
<pair>

<contact0>
<atom> name </atom>
<r e s idue> name </re s idue>

</contact0>
<contact1>

37

<atom> name </atom>
<r e s idue> name </re s idue>

</contact1>
</pair>
. . .

</e x p l i c i t>

</contacts>

The file protein-protein-contacts.xml.bak in the thrombin example rep-
resents the same rules used by the auxiliary programs in SDA for protein-
protein interactions, and thus can be used for systems other than thrombin-
thrombomodulin.

4.3 make rxn file

This program can make use of the output of make rxn pairs to create a
reaction file.

• -pairs : output of make rxn pairs

• -nneeded : number of distinct pairs needed for a reaction

• -distance : if -nneeded pairs have a distance less than -distance, then
a reaction occurs

• -rxn : name of reaction

• -state from : name of state before reaction

• -state to : name of state after reaction

• -mol0 : followed by two names: the group, and the section (core or
chain). This describes the first group.

• -mol1 : followed by two names: the group, and the section (core or
chain). This describes the second group.

An example of usage can be seen in the Makefile of the thrombin example.

38

4.4 get areas

This program takes only one argument, the name of the file output by
pqr2xml, and outputs to standard output an XML file of atomic solvent-
accesible areas. The solvent radius used is 1.4Å(later we will add a flag
to change that.) This program calls APBS to compute the areas. Right
now, it is not incorporated into the calling sequence of bd top, but will be
eventually.

4.5 surface spheres

This program reads a PQRXML file from standard input describing the
charged spheres (output from pqr2xml), and outputs an XML file with four
lists. The first list is a list of the triangles of the surface spheres; each triangle
is a trio of integers, with each integer representing a sphere. These triangles
come from an algorithm which is almost identical to that used in Michel
Sanner’s MSMS. A probe rolls across the molecule surface and touches three
spheres at a time as it makes its way. The second list is a list of integers,
each representing a surface sphere. The third list is a list of ”insiders”, or
those spheres completely enclosed within a surface sphere. The fourth list is
a list of ”danglers”, or those spheres that hang out into the solvent but could
not be picked up by the ball-rolling algorithm. The following input flags are
used:

• -probe radius : changes probe radius from default of 1.5

• -all : simply include all spheres in surface

Once the surface spheres and their triangles are computed, the program must
then distinguish between the interior spheres and the danglers. A point is
selected which is guaranteed to outside. Then, for each remaining sphere,
a line segment is constructed running from the exterior point to the sphere
center. The program counts how many surface triangles are intersected by
the line segment (this is done using a log(n) algorithm so that every triangle
does not need to be checked). The number of intersections denotes whether
the sphere is inside or outside the cage of surface triangles. If the program
is unlucky and the line hits a triangle edge, the program will perturb the
exterior point slightly and try again.
Example:

39

s u r f a c e s ph e r e s < mol . xml −probe rad iu s 1 .6 > mol su r f a ce . xml

4.6 make surface sphere list

This program generates an XML file (equivalent to PQR) of spheres on the
surface. It reads in the surface and dangler spheres from the output of sur-
face spheres, as well as spheres from the reaction file (output of make rxn file)
that have not been included by surface spheres. The following input files are
used:

• -surface : surface file (output from surface spheres)

• -spheres : XML file of spheres (output from pqr2xml)

• -group : group name

• -core : core name

• -rxn : XML reaction criteria file

Example:

mak e s u r f a c e s ph e r e l i s t −s u r f a c e mo l su r f a c e . xml −sphere s mol . xml
−group my group −core my core −rxn mol rxn . xml

4.7 Programs that generate charges

The following three programs use standard input and output

4.7.1 test charges

Generates a test charge for each sphere.

4.7.2 residue test charges

Generates test charge for each charged residue; position is at center of charge
for each residue.

4.7.3 protein test charges

Generates test charges for charged residues using the SDA model.

40

4.8 lumped charges

The script lumped charges takes as its input the xml file of effective charges
from the output of the effective charges programs above and outputs another
xml file containing a hierarchical grouping of the charges. The key idea is
that if the source of electric field is far away from a group of force centers
and you want to compute the force and torque on the group, the group can
be compressed into a smaller and faster data structure. Using the technique
of Chebyshev interpolation, the group can be converted into a data structure
that I’ll call a chebybox. The chebybox has a rectangular array of 64 positions
(4 × 4 × 4) where the electric potential is evaluated. The resulting force is
a linear combination of contributions from each position multiplied by the
electric potential evaluated at the position:

F =
64∑
i=1

Vifi, (9)

where Vi is the electric potential evaluated at point i and fi is the contribution
from point i. The torque is computed from a similar linear combination.
Mathematically, the chebybox approximation is exact if the the potential is
a cubic function.
Chebyboxes can be nested. If, during the course of a simulation, the field
source comes closer to a group of force centers, then the chebybox represent-
ing the group might not provide accurate forces and torques, so the group
must be split into two groups, each with its own chebybox. For example,
near a point charge, the potential cannot be represented by one cubic func-
tion over a volume that is large compared to the distance from the charge.
The decision is made by computing the ratio of distance of the box center
from the field source, to the box diagonal length. If this ratio is below a
certain threshhold, the box is divided. Finally, it is not worthwhile to use a
chebybox if the number of force centers in a group is much less than 64; it is
better to evaluate the force on each center explicitly.
In addition to an outer 4 × 4 × 4 chebybox, the program also generates an
outer 3×3×3 chebybox, which can be used when the molecules are far apart.
The following input flags are used:

• -max : maximum number of points in box (default 40)

• -pts : XML file of charged points;

• -thr : distance to diameter ratio for skipping inner boxes (default 2.0);

41

4.9 mpole grid fit

This program computes a multipole fit (out to quadrupole level) to the outer
points of the input grid. The fit is done by least squares on the surface of
the largest sphere enclosed by the grid. The multipole information is output
as an XML file. It also computes the minimum distance from the center at
which the field is amost radially symmetric. It can use either an electric field
file or a file of charges. The following input flags are used:

• -dx : Electric field in DX format

• -charges : XML file of molecule charges if there are no arguments for
dx

• -center : center of fitting sphere (3 numbers). If not included, default
is grid center

• -solvdi : Solvent dielectric (default 78)

• -vperm : vacuum permitivity (default value assuming units of Angstroms,
electron charge, and kT (298 K))

• -debye : Debye length (default infinity)

4.10 inside points

This program outputs an XML file representing a rectangular grid of points,
each with a 1 or 0 depending on whether the point is inside (1) or outside (0)
the molecule. The program reads in the XML sphere data (from pqr2xml)
and the surface information from surface spheres. For this application, a
point is ”inside” if it meets at one of two criteria. First of all, if the point’s
distance from the surface of any surface or dangler atom is less than a certain
exclusion distance set by the user, it is considered inside. Second, if the point
is inside the cage of triangles formed by the surface spheres, it is considered
to be inside the molecule. The lower corner, spacing, and number of points
in each direction of the grid are set by the user. The 1’s and 0’s are output
in order, starting from the lower corner, with the x-direction varying most
rapidly. If the lower corner or spacing are not specified, reasonable and useful
defaults are chosen. The following input flags are used:

• -spheres : XML file with sphere data

42

• -surface : XML file with surface data (output from surface spheres)

• -exclusion distance : additional interior padding around each sphere
(default probe radius from surface file)

• -corner : lower corner of grid (three numbers)

• -ngrid : number of grid points in each direction (default 100 100 100)

• -spacing : spacing between grid points (three numbers)

• -egrid : use dx file as template for grid corner, size, and spacing instead
of previous three arguments

Each grid point is tested for inside-ness in same manner as in surface spheres
above. To speed things up, if a point has been found to be inside, the distance
to the nearest triangle is found, and all other points within that distance are
immediately marked as ”inside” as well. If the point is outside, then the
distance to the nearest sphere surface is found, and the points within that
distance are marked as ”outside”. This avoids having to find intersecting
triangles for most of the grid points.
The big advantage of this algorithm is that it avoids marking interior molec-
ular cavities as exterior. This is essential for efficiently lumping the effective
charges together.
Example:

i n s i d e p o i n t s −sphere s mol . xml −s u r f a c e mo l su r f a c e . xml
−eg r i d mol . dx > mo l i n s i d e p t s . xml

4.11 hydro params

Computes and outputs hydrodynamic radius [5] and center. Takes output of
inside points as input.

4.12 born integral

This program computes the Born integral on a grid for a molecule core as
described in Eq. 6 This integral is computed for all exterior grid points; the
geometry is given by the first input. A multipole method is used in order to
speed up the execution.

43

• -in : name of input file, which is the output file of 0’s and 1’s from
inside points

• -vperm : vacuum permittivity (default in units of Å, ps, kT at 298 K)

• -ieps : dielectric of solute (default 4)

• -oeps : dielectric of solvent (default 78)

• -debye : Debye length (default infinity)

• -dx : another dx file can be used as a template for the output, instead
of the input to -in

• -atoms : instead of using -in to describe the volume, a pqr xml file can
be used instead; this gives a grid equivalent to that used in the SDA
software package. This is now the default generated from bd top.

4.13 compute charges squared

This program takes a file of charges and produces a file of the charges squared.
This is used, along with the output of born integral, to compute the des-
olvation forces.

4.14 COFFDROP Programs

One version of spline-based potentials is COFFDROP from the Elcock group [1,
4]. The following two programs can help with setting up simulations with
the COFFDROP force field.

4.14.1 generate coffdrop beads

Outputs COFFDROP beads from atoms.

• -pqr : file of original atoms in XML format

• -map : mapping file from atoms to beads, from Browndye website.

• -charges : COFFDROP charge file, from Browndye website

• -radius : bead radius in Å. Default is 3.43.

44

4.14.2 coffdrop chain

Outputs chain file with bonds, bond angles, dihedrals, and excluded atoms
defined from the COFFDROP parameter file. The core information after the
−core flag has the following format. For each core, the following sequence
is given:

core_name core_file core_residue0 chain_residue0 (core_residue1 chain_residue1)

where the first two tokens are the name and file of the core, and one or
two pairs of the core residue number and the number of the attached chain
residue. If core residue0 - 1 exists, then chain residue must be the lowest
residue of the chain. Likewise, chain residue must be the highest in the
chain if core residue + 1 exists. The chain can be attached to one core at its
low or high end, or both ends, or each end can be attached to a different core.
The flag −core is given only once; if there is a second core, it is appended
to the information for the first core.

• -pqr : file of atoms in XML format

• -params : parameter file, most likely the COFFDROP parameter file
found on the Browndye website

• -conn : COFFDROP connectivity file, found on the website

• -name : name of the chain

• -core : information for each attached core; optional

• -constraints: no argument; if included, then bonds are replaced with
constraints.

• -frozen: no argument; if included, then chain can be frozen when far
from an interactor.

• -dt: time step size. If included, includes the value into the con-
stant dt tag in the output.

45

4.15 mrc2dx

Converts mrc-formatted file to dx format. Uses standard input and output

• -factor: multiplicative factor (default 1)

• -exp: outputs factor*exp(density) rather than factor*density; default
is false

4.16 scale interactions

Reads in the COFFDROP file and scales the negative values of the non-
bonded interactions. Outputs to standard output.

• -in: input COFFDROP file

• -scale: scale factor (default 1)

5 Flow of Control

Until I include an updated version of bd top from the previous version of
Browndye, which will do most of this automatically, users will have to go
through the following steps.
Starting files:

• PQR files of the cores

• PQR files of the chains

• Reaction file

• Electrostatic grid files from APBS for the cores

• Simulation XML file

Steps:

• Run pqr2xml to convert PQR files (chains and cores) to XML files

• Run surface spheres to obtain a surface description file for each core

• Run make surface sphere list to convert the surface description file
from surface spheres into a file with just surface atoms.

46

• Run inside points for each core to obtain a description of the core
interior, from the output of make surface sphere list.

• Run hydro params for each core to get the hydrodynamic parameters,
from the output of inside points.

• If using desolvation forces, run born integral on the output of in-
side points.

• Run one of the charge producing programs above (test charges,residue test charges,
or protein test charges) on the output of pqr2xml to get a file of
charges.

• Run lumped charges on the file of charges to get the lumped charges.

• If using desolvation forces, run compute charges squared on the
charge file above to get a file of charges squared, and run lumped charges
on that to get the lumped quantities.

• Run mpole grid fit on the outermost electrostatic grid of each core
to get the off-grid multipole model.

• If using the spline-based COFFDROPmodel, run generate coffdrop beads
on the core and chain atoms files to get “atom” files with the coarse-
grained beads.

• Build chain files.

For now, the chain files need to be built by hand if the molecular mechanics
model is being used; I hope to have additional programs to help the process
for suitable models. The coffdrop chain program can be used to build
chains that use the COFFDROP model, but for now it does not include the
necessary steps to attach a chain or loop to a core; that still needs to be done
by hand. That ability will be added soon, however.

6 Other Brownian Dynamics Packages

These are the ones I can think of right now; please let me know if I’m missing
any other important or interesting ones.

• SDA https://mcm.h-its.org/sda/doc/doc_sda7/index.html

47

• GeomBD http://chemcha-gpu0.ucr.edu/software/

• MacroDox http://www.cae.tntech.edu/~snorthrup/macrodox/macrodox.
html

• Atomic Resolution Brownian Dynamics http://bionano.physics.illinois.
edu/arbd

• BD Box https://bionano.cent.uw.edu.pl/Software/BD_BOX

• ReaDDy https://readdy.github.io/

• BDPack http://amir-saadat.github.io/BDpack/

• BrownMove https://www-cbi.cs.uni-saarland.de/services/the-brownmove-many-particle-brownian-dynamics-simulation-package/

• UHBD (The grandma of them all! If anyone knows of a good link,
please let me know; otherwise, I might set up another website.)

7 References

References

[1] Casey T. Andrews and Adrian H. Elcock. COFFDROP: A Coarse-
Grained Nonbonded Force Field for Proteins Derived from All-Atom
Explicit-Solvent Molecular Dynamics Simulations of Amino Acids. Jour-
nal of Chemical Theory and Computation, 10(11):5178–5194, NOV 2014.

[2] Adrian H. Elcock. Molecule-Centered Method for Accelerating the Cal-
culation of Hydrodynamic Interactions in Brownian Dynamics Simu-
lations Containing Many Flexible Biomolecules. Journal of Chemical
Theory and Computation, 9(7):3224–3239, JUL 2013.

[3] D. L. Ermak and J. A. McCammon. Brownian dynamics with hydrody-
namic interactions. J. Chem. Phys., 69(4):1352–1360, 1978.

[4] Tamara Frembgen-Kesner, Casey T. Andrews, Shuxiang Li, Nguyet Anh
Ngo, Scott A. Shubert, Aakash Jain, Oluwatoni J. Olayiwola, Mitch R.
Weishaar, and Adrian H. Elcock. Parametrization of Backbone Flexibil-
ity in a Coarse-Grained Force Field for Proteins (COFFDROP) Derived

48

from All-Atom Explicit-Solvent Molecular Dynamics Simulations of All
Possible Two-Residue Peptides. Journal of Chemical Theory and Com-
putation, 11(5):2341–2354, MAY 2015.

[5] S Hansen. Translational friction coefficients for cylinders of arbitrary
axial ratios estimated by monte carlo simulation. Journal of Chemical
Physics, 121(18):9111–9115, Nov 8 2004.

[6] G. A. Huber and S. Kim. Weighted-ensemble Brownian dynamics simu-
lations for protein association reactions. Biophysical Journal, 70:97–110,
1996.

[7] G. A. Huber and J. A. McCammon. Browndye: a software package
for Brownian dynamics. Computer Physics Communications, 181:1896–
1905, 2010.

[8] S. Northrup, S. A. Allison, and J. A. McCammon. Brownian dynam-
ics simulation of diffusion-influenced biomolecular reactions. J. Chem.
Phys., 80:1517–1524, 1984.

[9] DN Politis and JP Romano. The stationary bootstrap. Journal of The
American Statistical Association, 89(428):1303–1313, Dec 1994.

[10] Leonardo G. Trabuco, Elizabeth Villa, Kakoli Mitra, Joachim Frank,
and Klaus Schulten. Flexible fitting of atomic structures into electron
microscopy maps using molecular dynamics. Structure, 16(5):673–683,
MAY 2008.

49

